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Figure 4
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Figure 6

Consensus Sequencing removes artifactual sequencing errors
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Figure 7
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Consensus Sequencing results in accurate
recovery of spiked-in control mutations
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Figure 10

Python code for pairing DCS reads among partner strands

import sys
import pysam
from optparse import OptionParser

#This program takes as input a BAM file with DCS SMI's in the header, and searches
for the partner SMI. Reads with paired SMIs are kept. Non-agreeing positions
within a read are replaced with N's.

parser=0ptionParser()

parser.add_option(“--infile", action="store”, type='string’', dest="infile”,
help="input BAM file”, default='sys.stdin'}

parser.add_option(“--outfile”, action="store”, type=’'string’, dest="outfile",
help="output BAM file", default='/dev/stdout’)

parser.add_option(”--readnumloc”, action="store“, type='int’, dest="readnumloc”,
help="header field containing read number", default='3")
parser.add_option("--tagloc”, action="store”, type='int', dest="tagloc”,
help="header field containing SMI", default="'2")

o, args = parser.parse_args(}

inBam = pysam.Samfile{ o.infile, "rb"” )
readDict = {}

dictctr = @

seqetr = @
tagmatchctr = @
partialmatchctr = @
seqgreplacectyr = @
Nctr = 8

#first, build a dictionary with read 1 SMI's as key, and the corresponding
sequence as an entry.
for line in inBam :

lineSplit = line.gname
read = lineSplit.split(":")[o.readnumloc]

tag = lineSplit.split(”:“){o.tagloc]
if read == '1" and tag not in readDict :

readDict{tag] = [line.seq, ']
dictctr += 1

if dictctr % 1000008 ==
print > sys.stderr, "sequences added to dictionary:”, dictcir
dictetr += 1

inBam.close()
inBam = pysam.Samfile( o.infile, "rb" )

#next, evaluate every read 2 SMI for a match in the dictionary
for line in inBam :
segctr += 1

lineSplit = line.gname
read = lineSplit.split(”:"){o.readnumloc]
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Figure 10 (cont.)

tag = lineSplit.split(”:“){o.tagloc]
switchtag = tag[i8:28] + tag{:18}

if read == "2’ and switchtag in readDict :
tagmatchctr += 1

if len(line.seq) == len(readDict[switchtagiie]) :
newSeq = "'
for 1 in xrange (len{line.seq) ) :

if line.seq{i] == readDict{switchtagifel}{i] :
newSeqg = newSeg + line.segii]

else :
newSeq = newSeq + ‘N’

if line.seq l= readDictswitchtagl[@] and newSeq.count('N') < 20 :
partialmatchctr += 1
Nctr += newSeqg.count('N’)

if newSeq.count('N') < {readDict{switchtag][1]).count{'N") or {
readDict{switchtag]{i] == °’ and newSeg.count('N’) < 20 ) :
readDict{switchtag][1] = newSeg
segreplacectr += 1

if seqctr % 1006008 ==
print >> sys.stderr, “tags processed for matches:", segctr
print >> sys.stderr, "tag matches:”, tagmatchctr
print >> sys.stderr, "total seqguence matches:", segreplacectr
print >> sys.stderr, "reads containing disagreeing bases (replaced with
N's):", partialmatchctr
print >> sys.stderr, “number of N's added:”, Nctr

inBam.close()

# Done generating tag dictionary. Reinterate over bamfile and write entries that
have a sequence match.

inBam = pysam.Samfile( o.infile, "“rb" )
outBam = pysam.Samfile { oc.outfile, “wb", template=inBam)

printlinectr

= 8
printlinematch =

o

for line in inBam :
printlinectr += 1
lineSplit = line.gname

tag = lineSplit.split(”:“)[{o.tagloc]
read = lineSplit.split(“:”){o.readnumloc]

if tag in readDict and read == '1° and len (readDict{tag]{i]) > @ :

line.seq = readDict{tag]{i]
readDict{taglf1] = "'
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printlinematch += 1

outBam.write(line)

if printlinectr % 1000088 ==
print >> sys.stderr, “Lines evaluated for printing:”, printlinectr
print >> sys.stderr, "Matching sequences printed:”, printlinematch

print >>
print >>
print >>
print >>

SyS.
Sys,
Sys.
.stderr,

sys

stdernr,
stderr,
stderr,

"Total
"Total
"Total
"Total

N's):", partialmatchctr
print >> sys.stderr, "total

inBam.close()

outBam.close()

tags processed for matches:”, seqctr

tag matches:", tagmatchctr

sequence matches:”, seqgreplacectr

reads containing disagreeing bases (replaced with

number of N's added:", Nctr
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METHODS OF LOWERING THE ERROR
RATE OF MASSIVELY PARALLEL DNA
SEQUENCING USING DUPLEX CONSENSUS
SEQUENCING

PRIORITY CLAIM

This application is a continuation of U.S. patent applica-
tion Ser. No. 15/660,785, filed Jul. 26, 2017 and now
pending, which is a continuation of U.S. patent application
Ser. No. 14/386,800, filed Sep. 20, 2014 and now U.S. Pat.
No. 9,752,188, which is a U.S. national stage application of
International Application No. PCT/US2013/032665, filed
Mar. 15, 2013, which claims priority to U.S. Provisional
Patent Application No. 61/613,413, filed Mar. 20, 2012; U.S.
Provisional Patent Application No. 61/625,623, filed Apr.
17, 2012; and U.S. Provisional Patent Application No.
61/625,319, filed Apr. 17, 2012; the subject matter of all of
which are hereby incorporated by reference as if fully set
forth herein.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
Grant Nos. F30AG033485, ROI1CA102029  and
RO1CA115802 awarded by the National Institutes of Health.
The government has certain rights in the invention.

BACKGROUND

The advent of massively parallel DNA sequencing has
ushered in a new era of genomic exploration by making
simultaneous genotyping of hundreds of billions of base-
pairs possible at small fraction of the time and cost of
traditional Sanger methods [1]. Because these technologies
digitally tabulate the sequence of many individual DNA
fragments, unlike conventional techniques which simply
report the average genotype of an aggregate collection of
molecules, they offer the unique ability to detect minor
variants within heterogeneous mixtures [2].

This concept of “deep sequencing” has been implemented
in a variety fields including metagenomics [3, 4], paleog-
enomics [5], forensics [6], and human genetics [7, 8] to
disentangle subpopulations in complex biological samples.
Clinical applications, such prenatal screening for fetal aneu-
ploidy [9, 10], early detection of cancer [11] and monitoring
its response to therapy [12, 13] with nucleic acid-based
serum biomarkers, are rapidly being developed. Exceptional
diversity within microbial [14, 15] viral [16-18] and tumor
cell populations [19, 20] has been characterized through
next-generation sequencing, and many low-frequency, drug-
resistant variants of therapeutic importance have been so
identified [12, 21, 22]. Previously unappreciated intra-or-
ganismal mosasism in both the nuclear [23] and mitochon-
drial [24, 25] genome has been revealed by these technolo-
gies, and such somatic heterogeneity, along with that arising
within the adaptive immune system [13], may be an impor-
tant factor in phenotypic variability of disease.

Deep sequencing, however, has limitations. Although, in
theory, DNA subpopulations of any size should be detectable
when deep sequencing a sufficient number of molecules, a
practical limit of detection is imposed by errors introduced
during sample preparation and sequencing. PCR amplifica-
tion of heterogeneous mixtures can result in population
skewing due to stoichastic and non-stoichastic amplification
biases and lead to over- or under-representation of particular
variants [26]. Polymerase mistakes during pre-amplification
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generate point mutations resulting from base mis-incorpo-
rations and rearrangements due to template switching [26,
27]. Combined with the additional errors that arise during
cluster amplification, cycle sequencing and image analysis,
approximately 1% of bases are incorrectly identified,
depending on the specific platform and sequence context [2,
28]. This background level of artifactual heterogeneity
establishes a limit below which the presence of true rare
variants is obscured [29].

A variety of improvements at the level of biochemistry
[30-32] and data processing [19, 21, 28, 32, 33] have been
developed to improve sequencing accuracy. The ability to
resolve subpopulations below 0.1%, however, has remained
elusive. Although several groups have attempted to increase
sensitivity of sequencing, several limitations remain. For
example techniques whereby DNA fragments to be
sequenced are each uniquely tagged [34, 35] prior to ampli-
fication [36-41] have been reported. Because all amplicons
derived from a particular starting molecule will bear its
specific tag, any variation in the sequence or copy number
of identically tagged sequencing reads can be discounted as
technical error. This approach has been used to improve
counting accuracy of DNA [38, 39, 41] and RNA templates
[37, 38, 40] and to correct base errors arising during PCR or
sequencing [36, 37, 39]. Kinde et. al. reported a reduction in
error frequency of approximately 20-fold with a tagging
method that is based on labeling single-stranded DNA
fragments with a primer containing a 14 bp degenerate
sequence. This allowed for an observed mutation frequency
of ~0.001% mutations/bp in normal human genomic DNA
[36]. Nevertheless, a number of highly sensitive genetic
assays have indicated that the true mutation frequency in
normal cells is likely to be far lower, with estimates of
per-nucleotide mutation frequencies generally ranging from
10 to 107! [42]. Thus, the mutations seen in normal
human genomic DNA by Kinde et al. are likely the result of
significant technical artifacts.

Traditionally, next-generation sequencing platforms rely
upon generation of sequence data from a single strand of
DNA. As a consequence, artifactual mutations introduced
during the initial rounds of PCR amplification are undetect-
able as errors—even with tagging techniques—if the base
change is propagated to all subsequent PCR duplicates.
Several types of DNA damage are highly mutagenic and
may lead to this scenario. Spontaneous DNA damage arising
from normal metabolic processes results in thousands of
damaging events per cell per day [43]. In addition to damage
from oxidative cellular processes, further DNA damage is
generated ex vivo during tissue processing and DNA extrac-
tion [44]. These damage events can result in frequent
copying errors by DNA polymerases: for example a com-
mon DNA lesion arising from oxidative damage, 8-oxo-
guanine, has the propensity to incorrectly pair with adenine
during complementary strand extension with an overall
efficiency greater than that of correct pairing with cytosine,
and thus can contribute a large frequency of artifactual G—T
mutations [45]. Likewise, deamination of cytosine to form
uracil is a particularly common event which leads to the
inappropriate insertion of adenine during PCR, thus produc-
ing artifactual C—T mutations with a frequency approach-
ing 100% [46].

It would be desirable to develop an approach for tag-
based error correction, which reduces or eliminates artifac-
tual mutations arising from DNA damage, PCR errors, and
sequencing errors; allows rare variants in heterogeneous
populations to be detected with unprecedented sensitivity;
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and which capitalizes on the redundant information stored in
complexed double-stranded DNA.

SUMMARY

In one embodiment, a single molecule identifier (SMI)
adaptor molecule for use in sequencing a double-stranded
target nucleic acid molecule is provided. Said SMI adaptor
molecule includes a single molecule identifier (SMI)
sequence which comprises a degenerate or semi-degenerate
DNA sequence; and an SMI ligation adaptor that allows the
SMI adaptor molecule to be ligated to the double-stranded
target nucleic acid sequence. The SMI sequence may be
single-stranded or double-stranded. In some embodiments,
the double-stranded target nucleic acid molecule is a double-
stranded DNA or RNA molecule.

In another embodiment, a method of obtaining the
sequence of a double-stranded target nucleic acid is pro-
vided (also known as Duplex Consensus Sequencing or
DCS) is provided. Such a method may include steps of
ligating a double-stranded target nucleic acid molecule to at
least one SMI adaptor molecule to form a double-stranded
SMI-target nucleic acid complex; amplifying the double-
stranded SMI-target nucleic acid complex, resulting in a set
of amplified SMI-target nucleic acid products; and sequenc-
ing the amplified SMI-target nucleic acid products.

In some embodiments, the method may additionally
include generating an error-corrected double-stranded con-
sensus sequence by (i) grouping the sequenced SMI-target
nucleic acid products into families of paired target nucleic
acid strands based on a common set of SMI sequences; and
(i1) removing paired target nucleic acid strands having one
or more nucleotide positions where the paired target nucleic
acid strands are non-complementary (or alternatively
removing individual nucleotide positions in cases where the
sequence at the nucleotide position under consideration
disagrees among the two strands). In further embodiments,
the method confirms the presence of a true mutation by (i)
identifying a mutation present in the paired target nucleic
acid strands having one or more nucleotide positions that
disagree; (ii) comparing the mutation present in the paired
target nucleic acid strands to the error corrected double-
stranded consensus sequence; and (iii) confirming the pres-
ence of a true mutation when the mutation is present on both
of the target nucleic acid strands and appears in all members
of a paired target nucleic acid family.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an overview of Duplex Consensus
Sequencing. Sheared double-stranded DNA that has been
end-repaired and T-tailed is combined with A-tailed SMI
adaptors and ligated according to one embodiment. Because
every adaptor contains a unique, double-stranded, comple-
mentary n-mer random tag on each end (n-mer=12 bp
according to one embodiment), every DNA fragment
becomes labeled with two distinct SMI sequences (arbi-
trarily designated o and f§ in the single capture event
shown). After size-selecting for appropriate length frag-
ments, PCR amplification with primers containing Illumina
flow-cell-compatible tails is carried out to generate families
of PCR duplicates. By virtue of the asymmetric nature of
adapted fragments, two types of PCR products are produced
from each capture event. Those derived from one strand will
have the o SMI sequence adjacent to flow-cell sequence 1
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and the f SMI sequence adjacent to flow cell sequence 2.
PCR products originating from the complementary strand
are labeled reciprocally.

FIG. 2 illustrates Single Molecule Identifier (SMI) adap-
tor synthesis according to one embodiment. Oligonucle-
otides are annealed and the complement of the degenerate
lower arm sequence (N’s) plus adjacent fixed bases is
produced by polymerase extension of the upper strand in the
presence of all four dNTPs. After reaction cleanup, complete
adaptor A-tailing is ensured by extended incubation with
polymerase and dATP.

FIG. 3 illustrates error correction through Duplex Con-
sensus Sequencing (DCS) analysis according to one embodi-
ment. (a-c) shows sequence reads (brown) sharing a unique
set of SMI tags are grouped into paired families with
members having strand identifiers in either the aff or pa
orientation. Each family pair reflects one double-stranded
DNA fragment. (a) shows mutations (spots) present in only
one or a few family members representing sequencing
mistakes or PCR-introduced errors occurring late in ampli-
fication. (b) shows mutations occurring in many or all
members of one family in a pair representing mutations
scored on only one of the two strands, which can be due to
PCR errors arising during the first round of amplification
such as might occur when copying across sites of mutagenic
DNA damage. (¢) shows true mutations (* arrow) present on
both strands of a captured fragment appear in all members
of'a family pair. While artifactual mutations may co-occur in
a family pair with a true mutation, these can be indepen-
dently identified and discounted when producing (d) an
error-corrected consensus sequence (i.e., single stranded
consensus sequence) (+ arrow) for each duplex. (e) shows
consensus sequences from all independently captured, ran-
domly sheared fragments containing a particular genomic
site are identified and (f) compared to determine the fre-
quency of genetic variants at this locus within the sampled
population.

FIG. 4 illustrates an example of how a SMI sequence with
n-mers of 4 nucleotides in length (4-mers) are read by
Duplex Consensus Sequencing (DCS) according to some
embodiments. (A) shows the 4-mers with the PCR primer
binding sites (or flow cell sequences) 1 and 2 indicated at
each end. (B) shows the same molecules as in (A) but with
the strands separated and the lower strand now written in the
5'-3' direction. When these molecules are amplified with
PCR and sequenced, they will yield the following sequence
reads: The top strand will give a read 1 file of TAAC- - - and
a read 2 file of GCCA- - -. Combining the read 1 and read
2 tags will give TAACCGGA as the SMI for the top strand.
The bottom strand will give a read 1 file of CGGA- - - - and
a read 2 file of TAAC- - -. Combining the read 1 and read
2 tags will give CGGATAAC as the SMI for the bottom
strand. (C) illustrates the orientation of paired strand muta-
tions in DCS. In the initial DNA duplex shown in FIGS. 4A
and 4B, a mutation “x” (which is paired to a complementary
nucleotide “y”) is shown on the left side of the DNA duplex.
The “x” will appear in read 1, and the complementary
mutation on the opposite strand, “y,” will appear in read 2.
Specifically, this would appear as “x” in both read 1 and read
2 data, because “y” in read 2 is read out as “x” by the
sequencer owing to the nature of the sequencing primers,
which generate the complementary sequence during read 2.

FIG. 5 illustrates duplex sequencing of human mitochon-
drial DNA. (A) Overall mutation frequency as measured by
a standard sequencing approach, SSCS, and DCS. (B) Pat-
tern of mutation in human mitochondrial DNA by a standard
sequencing approach. The mutation frequency (vertical axis)
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is plotted for every position in the ~16-kb mitochondrial
genome. Due to the substantial background of technical
error, no obvious mutational pattern is discernible by this
method. (C) DCS analysis eliminates sequencing artifacts
and reveals the true distribution of mitochondrial mutations
to include a striking excess adjacent to the mtDNA origin of
replication. (D) SSCS analysis yields a large excess of G—=T
mutations relative to complementary C—A mutations, con-
sistent with artifacts from damaged-induced 8-0x0-G lesions
during PCR. All significant (P<0.05) differences between
paired reciprocal mutation frequencies are noted. (E) DCS
analysis removes the SSCS strand bias and reveals the true
mtDNA mutational spectrum to be characterized by an
excess of transitions.

FIG. 6 shows that consensus sequencing removes artifac-
tual sequencing errors as compared to Raw Reads. Duplex
Consensus Sequencing (DCS) results in an approximately
equal number of mutations as the reference and single strand
consensus sequencing (SSCS).

FIG. 7 illustrates duplex sequencing of M13mp2 DNA.
(A) Single-strand consensus sequences (SSCSs) reveal a
large excess of G—=A/C—T and G—T/C—A mutations,
whereas duplex consensus sequences (DCSs) yield a bal-
anced spectrum. Mutation frequencies are grouped into
reciprocal mispairs, as DCS analysis only scores mutations
present in both strands of duplex DNA. All significant
(P<0.05) differences between DCS analysis and the litera-
ture reference values are noted. (B) Complementary types of
mutations should occur at approximately equal frequencies
within a DNA fragment population derived from duplex
molecules. However, SSCS analysis yields a 15-fold excess
of G—T mutations relative to C—A mutations and an
11-fold excess of C—T mutations relative to G—A muta-
tions. All significant (P<0.05) differences between paired
reciprocal mutation frequencies are noted.

FIG. 8 shows the effect of DNA damage on the mutation
spectrum. DNA damage was induced by incubating purified
M13mp2 DNA with hydrogen peroxide and FeSO4. (A)
SSCS analysis reveals a further elevation from baseline of
G—T mutations, indicating these events to be the artifactual
consequence of nucleotide oxidation. All significant
(P<0.05) changes from baseline mutation frequencies are
noted. (B) Induced DNA damage had no effect on the overall
frequency or spectrum of DCS mutations.

FIG. 9 shows duplex sequencing results in accurate recov-
ery of spiked-control mutations. A series of variants of
M13mp2 DNA, each harboring a known single-nucleotide
substitution, were mixed in together at known ratios and the
mixture was sequenced to ~20,000-fold final depth. Stan-
dard sequencing analysis cannot accurately distinguish
mutants present at a ratio of less than 1/100, because
artifactural mutations occurring at every position obscure
the presence of less abundant true mutations, rendering
apparent recovery greater than 100%. Duplex consensus
sequences, in contrast, accurately identify spiked-in muta-
tions down to the lowest tested ratio of 1/10,000.

FIG. 10 is a Python Code that may used to carry out
methods described herein according to one embodiment.

DETAILED DESCRIPTION

Single molecule identifier adaptors and methods for their
use are provided herein. According to the embodiments
described herein, a single molecule identifier (SMI) adaptor
molecule is provided. Said SMI adaptor molecule is double
stranded, and may include a single molecule identifier (SMI)
sequence, and an SMI ligation adaptor (FIG. 2). Optionally,
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6
the SMI adaptor molecule further includes at least two PCR
primer binding sites, at least two sequencing primer binding
sites, or both.

The SMI adaptor molecule may form a “Y-shape” or a
“hairpin shape.” In some embodiments, the SMI adaptor
molecule is a “Y-shaped” adaptor, which allows both strands
to be independently amplified by a PCR method prior to
sequencing because both the top and bottom strands have
binding sites for PCR primers FC1 and FC2 as shown in the
examples below. A schematic of a Y-shaped SMI adaptor
molecule is also shown in FIG. 2. A Y-shaped SMI adaptor
requires successful amplification and recovery of both
strands of the SMI adaptor molecule. In one embodiment, a
modification that would simplify consistent recovery of both
strands entails ligation of a Y-shaped SMI adaptor molecule
to one end of a DNA duplex molecule, and ligation of a
“U-shaped” linker to the other end of the molecule. PCR
amplification of the hairpin-shaped product will then yield a
linear fragment with flow cell sequences on either end.
Distinct PCR primer binding sites (or flow cell sequences
FC1 and FC2) will flank the DNA sequence corresponding
to each of the two SMI adaptor molecule strands, and a given
sequence seen in Read 1 will then have the sequence
corresponding to the complementary DNA duplex strand
seen in Read 2. Mutations are scored only if they are seen
on both ends of the molecule (corresponding to each strand
of the original double-stranded fragment), i.c. at the same
position in both Read 1 and Read 2. This design may be
accomplished as described in the examples relating to
double stranded SMI sequence tags.

In other embodiments, the SMI adaptor molecule is a
“hairpin” shaped (or “U-shaped”) adaptor. A hairpin DNA
product can be used for error correction, as this product
contains both of the two DNA strands. Such an approach
allows for reduction of a given sequencing error rate N to a
lower rate of N*N*(1/3), as independent sequencing errors
would need to occur on both strands, and the same error
among all three possible base substitutions would need to
occur on both strands. For example, the error rate of 1/100
in the case of [llumina sequencing [32] would be reduced to
(1/100)*(1/100)*(1/3)=1/30,000.

An additional, more remarkable reduction in errors can be
obtained by inclusion of a single-stranded SMI in either the
hairpin adaptor or the “Y-shaped” adaptor will also function
to label both of the two DNA strands. Amplification of
hairpin-shaped DNA may be difficult as the polymerase
must synthesize through a product containing significant
regions of self-complementarity, however, amplification of
hairpin-shaped structures has already been established in the
technique of hairpin PCR, as described below. Amplification
using hairpin PCR is further described in detail in U.S. Pat.
No. 7,452,699, the subject matter of which is hereby incor-
porated by reference as if fully set forth herein.

According to the embodiments described herein, the SMI
sequence (or “tag”) may be a double-stranded, complemen-
tary SMI sequence or a single-stranded SMI sequence. In
some embodiments, the SMI adaptor molecule includes an
SMI sequence (or “tag”) of nucleotides that is degenerate or
semi-degenerate. In some embodiments, the degenerate or
semi-degenerate SMI sequence may be a random degenerate
sequence. A double-stranded SMI sequence includes a first
degenerate or semi-degenerate nucleotide n-mer sequence
and a second n-mer sequence that is complementary to the
first degenerate or semi-degenerate nucleotide n-mer
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sequence, while a single-stranded SMI sequence includes a
first degenerate or semi-degenerate nucleotide n-mer
sequence. The first and/or second degenerate or semi-de-
generate nucleotide n-mer sequences may be any suitable
length to produce a sufficiently large number of unique tags
to label a set of sheared DNA fragments from a segment of
DNA. Each n-mer sequence may be between approximately
3 to 20 nucleotides in length. Therefore, each n-mer
sequence may be approximately 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20 nucleotides in length. In one
embodiment, the SMI sequence is a random degenerate
nucleotide n-mer sequence which is 12 nucleotides in
length. A 12 nucleotide SMI n-mer sequence that is ligated
to each end of a target nucleic acid molecule, as described
in the Example below, results in generation of up to 4** (i.e.,
2.8x10™*) distinct tag sequences.

In some embodiments, the SMI tag nucleotide sequence
may be completely random and degenerate, wherein each
sequence position may be any nucleotide. (i.e., each posi-
tion, represented by “X,” is not limited, and may be an
adenine (A), cytosine (C), guanine (G), thymine (T), or
uracil (U)) or any other natural or non-natural DNA or RNA
nucleotide or nucleotide-like substance or analog with base-
pairing properties (e.g., xanthosine, inosine, hypoxanthine,
xanthine, 7-methylguanine, 7-methylguanosine, 5,6-dihy-
drouracil, 5-methylcytosine, dihydouridine, isocytosine,
isoguanine, deoxynucleosides, nucleosides, peptide nucleic
acids, locked nucleic acids, glycol nucleic acids and threose
nucleic acids). The term “nucleotide” as described herein,
refers to any and all nucleotide or any suitable natural or
non-natural DNA or RNA nucleotide or nucleotide-like
substance or analog with base pairing properties as
described above. In other embodiments, the sequences need
not contain all possible bases at each position. The degen-
erate or semi-degenerate n-mer sequences may be generated
by a polymerase-mediated method described in the Example
below, or may be generated by preparing and annealing a
library of individual oligonucleotides of known sequence.
Alternatively, any degenerate or semi-degenerate n-mer
sequences may be a randomly or non-randomly fragmented
double stranded DNA molecule from any alternative source
that differs from the target DNA source. In some embodi-
ments, the alternative source is a genome or plasmid derived
from bacteria, an organism other than that of the target
DNA, or a combination of such alternative organisms or
sources. The random or non-random fragmented DNA may
be introduced into SMI adaptors to serve as variable tags.
This may be accomplished through enzymatic ligation or
any other method known in the art.

In some embodiments, the SMI adaptor molecules are
ligated to both ends of a target nucleic acid molecule, and
then this complex is used according to the methods
described below. In certain embodiments, it is not necessary
to include n-mers on both adapter ends, however, it is more
convenient because it means that one does not have to use
two different types of adaptors and then select for ligated
fragments that have one of each type rather than two of one
type. The ability to determine which strand is which is still
possible in the situation wherein only one of the two
adaptors has a double-stranded SMI sequence.
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In some embodiments, the SMI adaptor molecule may
optionally
sequence downstream of the n-mer sequences to help make
ligation more uniform and help computationally filter out
errors due to ligation problems with improperly synthesized
adaptors. Each strand of the double-stranded fixed reference
sequence may be 4 or 5 nucleotides in length sequence,
however, the fixed reference sequence may be any suitable
length including, but not limited to 3, 4, 5 or 6 nucleotides
in length.

include a double-stranded fixed reference

The SMI ligation adaptor may be any suitable ligation
adaptor that is complementary to a ligation adaptor added to
a double-stranded target nucleic acid sequence including,
but not limited to a T-overhang, an A-overhang, a CG
overhang, a blunt end, or any other ligatable sequence. In
some embodiments, the SMI ligation adaptor may be made
using a method for A-tailing or T-tailing with polymerase
extension; creating an overhang with a different enzyme;
using a restriction enzyme to create a single or multiple
nucleotide overhang, or any other method known in the art.

According to the embodiments described herein, the SMI
adaptor molecule may include at least two PCR primer or
“flow cell” binding sites: a forward PCR primer binding site
(or a “flow cell 1” (FC1) binding site); and a reverse PCR
primer binding site (or a “flow cell 2" (FC2) binding site).
The SMI adaptor molecule may also include at least two
sequencing primer binding sites, each corresponding to a
sequencing read. Alternatively, the sequencing primer bind-
ing sites may be added in a separate step by inclusion of the
necessary sequences as tails to the PCR primers, or by
ligation of the needed sequences. Therefore, if a double-
stranded target nucleic acid molecule has an SMI adaptor
molecule ligated to each end, each sequenced strand will
have two reads—a forward and a reverse read.

Double-Stranded SMI Sequences

Adaptor 1 (shown below) is a Y-shaped SMI adaptor as
described above (the SMI sequence is shown as X’s in the
top strand (a 4-mer), with the complementary bottom strand
sequence shown as Y’s):

(Adaptor 1)

Adaptor 2 (shown below) is a hairpin (or “U-shaped™)
linker:

(Adaptor 2)
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Following ligation of both adaptors to a double-stranded
target nucleic acid, the following is structure is obtained:

When melted, the product will be of the following form
(where “linker” is the sequence of adaptor 2):

Read 1
XXXX----- DNA----
Read 2 (note that read 2 is seen as the

complement of the bases sequenced:)

The sequences of the two duplex strands seen in the two
sequence reads may then be compared, and sequence infor-
mation and mutations will be scored only if the sequence at
a given position matches in both of the reads.

This approach does not strictly require the use of an SMI

tag, as the sheared ends can be used as identifiers to
differentiate unique individual molecules from PCR dupli-
cates. Thus the same concept would apply if one used any
standard sequencing adaptor as “Adaptor 1” and the
U-shaped linker as “Adaptor 2.” However described below,
there are a limited number of shear points flanking any given
genomic position and thus the power to sequence deeply is
increased via inclusion of the SMI tag. A hybrid method
using a combination of sheared ends and a shorter n-mer tag
(such as 1 or 2 or 3 or 4 or more degenerate or semi-
degenerate bases) in the adaptor may also serve as unique
molecular identifiers. Another design may include use of any
sequencing adaptor (such as one lacking an n-mer tag) in
conjunction with an n-mer tag that is incorporated into the
U-shaped linker molecule. Such a design would be of the
following form (where X and Y represent complementary
degenerate or semi-degenerate nucleotides):

Synthesis of such a design may be obtained in a number
of ways, for example synthesizing a set of hairpin oligo-
nucleotides in which each individual oligonucleotide
encodes a complementary n-mer sequence, or alternatively
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by using a DNA polymerase to carry out extension from the
following product (where X’s represent degenerate nucleo-
tides):

5'-XXXX----- \

3o/

Inclusion of the SMI tag is also extremely useful for
identifying correct ligation products, as the assay uses two
distinct adaptors. This will yield multiple possible ligation
products:

Product 1.
---------- YYYY--------FC2
Adaptor 1--------- DNA--------- Adaptor 2, which

yields the desired product:

FCl
\
\
AP KKK - ---- - DNA----------- \
I
----- YYYY-------DNA'----mm-mmo -/
/
/
/
FC2
Product 1II.
Adaptor 1- - - - ----- DNA--------- Adaptor 1. This

will result in the DNA being amplified as two separate
strands, i.e. as occurs in the DCS approach described else-
where in this document (the second copy of Adaptor 1 is
shown below with the SMI as AAA-BBB to emphasize that
every DCS adaptor has a distinct SMI sequence)

Fel FC2
/
\\ /
A KXXK-==-= - - DNA-------=--——- AAAA————/
----- YYYY--------DNA'-=----------BBBB-----
/ \
/ \
/ \
FC2 pel
Product III.

Adaptor 2- - - - ---- - DNA--------- Adaptor 2. This
will result in a non-amplifiable circular product shown
below:

/T —— DNA--------- \
1 1
R DNA'-------- /

Product III is non-amplifiable, given the absence of
primer binding sites and thus will not be present in the final
DNA sequences. Thus only Product II needs to be avoided.
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The formation of Product II can be minimized in the ligation
step by using an excess of Adaptor 2 (relative to Adaptor 1).
Then primarily Products I and III will be obtained, with
minimal formation of Product I1. Additionally, a variety of
biochemical means of enriching for products containing
adaptor 2 are possible such as using affinity probes that are
complementary to the hairpin loop sequence itself. Product
I results in the same SMI sequence in both the Read 1 and
Read 2 sequence reads. In the example depicted above,
Product I sequences can thus be identified by virtue of
having matching SMIs of the form XXXX in Read 1 and
XXXX in Read 2.

By contrast, in the case of Product II, the SMI sequences
on either end of the sequenced molecule will arise from
distinct DCS adaptors having different SMI sequences. In
the example shown above, Product II sequences yield SMIs
of'the form XXXX (Read 1)-BBB (Read 2) upon sequencing
of'the top strand, and BBBB (Read 1)-XXXX (Read 2) upon
sequencing of the bottom strand. Thus Product II sequences
can be easily identified and computationally removed from
the final sequence data.

Data resulting from Product II is useful, because 